
Swarm Drone Simulation Hackathon
Using Crazyswarm and pycrazyswarm (Simulation Only)

ROBOTECHNITK

March 6, 2025

Contents
1 Introduction 2

2 Stage 1: Basic Flight (Single Drone) 2
2.1 Objective . 2
2.2 Boilerplate Code . 2
2.3 Detailed Explanation . 3

3 Stage 2: Trajectory Tracking (Single Drone) 3
3.1 Objective . 3
3.2 Boilerplate Code . 3
3.3 Detailed Explanation . 4

4 Stage 3: Coordinated Flight (Multiple Drones) 5
4.1 Objective . 5
4.2 Boilerplate Code . 5
4.3 Detailed Explanation . 6

5 Stage 4: Dynamic Trajectory Control 6
5.1 Objective . 6
5.2 Boilerplate Code . 6
5.3 Detailed Explanation . 7

6 Stage 5: Advanced Swarm Behavior with Collision Avoidance 7
6.1 Objective . 7
6.2 Boilerplate Code . 7
6.3 Detailed Explanation . 9

7 Conclusion and Submission Guidelines 9
7.1 Final Submission Requirements . 9

8 References 10

1

1 Introduction
Welcome to the Swarm Drone Simulation Hackathon! In this competition, you will develop innova-
tive applications to control a swarm of Crazyflie drones using the pycrazyswarm Python API and
ROS in simulation mode only. Your solution will be built in five stages:

Stage 1: Basic Flight (Single Drone): Initialize the simulation and execute a simple flight
sequence (takeoff, hover, and land) for a single drone.

Stage 2: Trajectory Tracking (Single Drone): Command a single drone to follow a smooth
trajectory between points.

Stage 3: Coordinated Flight (Multiple Drones): Synchronize multiple drones to take off,
form a formation, and land.

Stage 4: Dynamic Trajectory Control: Implement dynamic re-planning by having a drone
follow a moving target (e.g., a circular path).

Stage 5: Advanced Swarm Behavior with Collision Avoidance: Combine multi-drone co-
ordination with collision avoidance in a dynamic formation.

All development is done in simulation mode. Remember to build your ROS workspace and
source it before running any scripts:
source ros_ws /devel/setup.bash

2 Stage 1: Basic Flight (Single Drone)

2.1 Objective

Initialize the simulation and perform a basic flight sequence: takeoff, hover, and land with a single
Crazyflie.

2.2 Boilerplate Code

#!/ usr/bin/env python
"""
Stage 1: Basic Flight Control for a Single Drone
This script initializes the Crazyswarm simulation and commands one drone to take

off ,
hover , and land.
"""

import time
from crazyswarm import Crazyswarm

def stage1_basic_flight ():
print("Stage 1: Initializing simulation ...")
swarm = Crazyswarm ()
allcfs = swarm. allcfs
timeHelper = swarm. timeHelper

Takeoff : Fly to 1.0 meter over 2 seconds
print(" Taking off ...")

2

allcfs . takeoff (targetHeight =1.0 , duration =2.0)
timeHelper .sleep (4.0) # Wait for stabilization

Hover for 5 seconds
print(" Hovering ...")
timeHelper .sleep (5.0)

Land: Descend to 0.0 meters over 2 seconds
print(" Landing ...")
allcfs .land(targetHeight =0.0 , duration =2.0)
timeHelper .sleep (3.0)

print("Stage 1 complete : Basic flight sequence finished .")

if __name__ == " __main__ ":
stage1_basic_flight ()

Listing 1: Stage 1: Basic Flight Control

2.3 Detailed Explanation

• Environment Setup:

– Build your ROS workspace (typically in ros_ws) and source the setup file:
source ros_ws /devel/setup.bash

– Run the script in simulation mode using the –sim flag:
python stage1_basic_flight .py --sim

• Code Walkthrough:

– The script initializes the simulation via the Crazyswarm class.
– It retrieves the list of drones (allcfs) and a timing helper (timeHelper).
– Commands are issued to take off (to 1.0 m), hover, and then land (to 0.0 m), with delays

ensuring each phase completes.

• Observation: In the simulation window, you should see the drone executing the flight sequence.

3 Stage 2: Trajectory Tracking (Single Drone)

3.1 Objective

Enhance Stage 1 by having the drone follow a smooth trajectory from its initial takeoff position to
a specified goal position using the goTo command.

3.2 Boilerplate Code

3

#!/ usr/bin/env python
"""
Stage 2: Single Drone Trajectory Tracking
This script commands a single drone to take off , move to a new position using a

smooth trajectory ,
and then land.
"""

import time
from crazyswarm import Crazyswarm

def stage2_trajectory_tracking ():
print("Stage 2: Initializing simulation ...")
swarm = Crazyswarm ()
allcfs = swarm. allcfs
timeHelper = swarm. timeHelper

Takeoff : Reach 1.0 meter altitude
print(" Taking off ...")
allcfs . takeoff (targetHeight =1.0 , duration =2.0)
timeHelper .sleep (4.0)

Trajectory : Move to a new position (e.g., [1.0 , 1.0, 1.0])
print(" Executing trajectory (goTo)...")
goal_position = [1.0 , 1.0, 1.0]
allcfs .goTo(goal= goal_position , yaw =0.0 , duration =3.0)
timeHelper .sleep (4.0)

Hover for 3 seconds at new position
print(" Hovering at new position ...")
timeHelper .sleep (3.0)

Land
print(" Landing ...")
allcfs .land(targetHeight =0.0 , duration =2.0)
timeHelper .sleep (3.0)

print("Stage 2 complete : Trajectory tracking finished .")

if __name__ == " __main__ ":
stage2_trajectory_tracking ()

Listing 2: Stage 2: Trajectory Tracking

3.3 Detailed Explanation

• Takeoff: The drone is commanded to ascend to 1.0 meter in 2 seconds. A delay allows it to
stabilize.

• Trajectory Execution: The goTo command calculates a smooth trajectory from the current
position to [1.0, 1.0, 1.0].

• Hovering and Landing: After reaching the target, the drone hovers briefly before landing.

• Observation: The simulation window should display the drone taking off, following the trajec-
tory, hovering, and landing.

4

4 Stage 3: Coordinated Flight (Multiple Drones)

4.1 Objective

Extend your solution to control multiple Crazyflies simultaneously. Use group commands to syn-
chronize maneuvers such as takeoff, formation flight, and landing.

4.2 Boilerplate Code

#!/ usr/bin/env python
"""
Stage 3: Coordinated Flight for Multiple Drones
This script commands multiple Crazyflies to take off , fly in a coordinated

formation , and land simultaneously .
"""

import time
from crazyswarm import Crazyswarm

def stage3_coordinated_flight ():
print("Stage 3: Initializing simulation for multiple drones ...")
swarm = Crazyswarm ()
allcfs = swarm. allcfs
timeHelper = swarm. timeHelper

Set all drones to the same group (e.g., group mask = 1)
for cf in allcfs . crazyflies :

cf. setGroupMask (1)

Synchronized Takeoff
print(" Coordinated takeoff ...")
allcfs . takeoff (targetHeight =1.0 , duration =2.0)
timeHelper .sleep (4.0)

Coordinated maneuver : Form a line formation
print(" Forming a line formation ...")
for cf in allcfs . crazyflies :

offset = [0.5 * cf.id , 0, 0]
current_pos = cf. position ()
goal = [current_pos [0] + offset [0], current_pos [1], current_pos [2]]
cf.goTo(goal=goal , yaw =0.0 , duration =3.0 , relative =False , groupMask =1)

timeHelper .sleep (5.0)

Synchronized Landing
print(" Coordinated landing ...")
allcfs .land(targetHeight =0.0 , duration =2.0)
timeHelper .sleep (3.0)

print("Stage 3 complete : Coordinated flight achieved .")

if __name__ == " __main__ ":
stage3_coordinated_flight ()

Listing 3: Stage 3: Coordinated Flight

5

4.3 Detailed Explanation

• Group Setup: Each drone is assigned a group mask (1) so that broadcast commands affect all
drones.

• Synchronized Takeoff and Landing: The entire swarm takes off and lands simultaneously.

• Coordinated Maneuver: The drones are commanded to form a line by moving to positions
offset by their IDs.

• Observation: Verify in simulation that all drones take off, form the line, and land simultane-
ously.

5 Stage 4: Dynamic Trajectory Control

5.1 Objective

Implement dynamic re-planning for a single drone by commanding it to follow a circular trajectory.
The drone’s setpoints are continuously updated using cmdPosition to follow the circular path.

5.2 Boilerplate Code

#!/ usr/bin/env python
"""
Stage 4: Dynamic Trajectory and Re - planning
This script demonstrates advanced control where a single drone follows a circular

trajectory
with continuous re - planning .
"""

import time
import numpy as np
from crazyswarm import Crazyswarm

def stage4_dynamic_trajectory ():
print("Stage 4: Initializing simulation for dynamic trajectory ...")
swarm = Crazyswarm ()
allcfs = swarm. allcfs
timeHelper = swarm. timeHelper

Use the first Crazyflie
cf = allcfs . crazyflies [0]

Takeoff
print(" Taking off ...")
cf. takeoff (targetHeight =1.0 , duration =2.0)
timeHelper .sleep (4.0)

Dynamic trajectory : circular motion in the XY plane
print(" Executing dynamic circular trajectory ...")
center = np.array ([1.0 , 1.0])
radius = 0.5
duration = 10.0
steps = 50
dt = duration / steps

6

for i in range(steps):
theta = 2 * np.pi * i / steps
pos_x = center [0] + radius * np.cos(theta)
pos_y = center [1] + radius * np.sin(theta)
pos = [pos_x , pos_y , 1.0]
cf. cmdPosition (pos , yaw =0.0)
timeHelper .sleep(dt)

Hover and then land
print(" Hovering ...")
timeHelper .sleep (2.0)
print(" Landing ...")
cf.land(targetHeight =0.0 , duration =2.0)
timeHelper .sleep (3.0)
print("Stage 4 complete : Dynamic trajectory executed .")

if __name__ == " __main__ ":
stage4_dynamic_trajectory ()

Listing 4: Stage 4: Dynamic Trajectory Control

5.3 Detailed Explanation

• Takeoff: The drone ascends to 1.0 meter and stabilizes.

• Circular Trajectory: A loop computes a circular path using numpy. The drone’s position is
updated continuously using cmdPosition to follow the circle.

• Hover and Land: After completing the circle, the drone hovers briefly before landing.

• Observation: In simulation, the drone should follow a smooth circular trajectory.

6 Stage 5: Advanced Swarm Behavior with Collision Avoidance

6.1 Objective

Develop an advanced control scenario where multiple drones perform coordinated flight while dy-
namically adjusting their trajectories to avoid collisions. This is achieved by computing avoid-
ance offsets for each drone based on its neighbors and continuously updating setpoints using
cmdPosition.

6.2 Boilerplate Code

#!/ usr/bin/env python
"""
Stage 5: Advanced Swarm Behavior with Collision Avoidance
This script demonstrates advanced behavior where multiple Crazyflies execute a

coordinated maneuver
and dynamically adjust trajectories to avoid simulated collisions .
"""

import time
import numpy as np
from crazyswarm import Crazyswarm

7

def compute_avoidance_offset (current_pos , desired_pos , other_positions ,
min_distance =0.3):
"""
Computes a simple repulsive offset to maintain a minimum distance from other

drones .
For each drone closer than min_distance , a repulsive force is applied
proportional to the difference .
"""
avoidance = np.array ([0.0 , 0.0, 0.0])
for pos in other_positions :

vec = np.array(desired_pos) - np.array(pos)
distance = np. linalg .norm(vec)
if distance < min_distance and distance > 0:

avoidance += (vec / distance) * (min_distance - distance)
return avoidance

def stage5_advanced_swarm ():
print("Stage 5: Initializing simulation for advanced swarm behavior ...")
swarm = Crazyswarm ()
allcfs = swarm. allcfs
timeHelper = swarm. timeHelper

Set group mask for coordinated control
for cf in allcfs . crazyflies :

cf. setGroupMask (1)

Synchronized takeoff : All drones ascend to 1.0 meter.
print(" Coordinated takeoff for swarm ...")
allcfs . takeoff (targetHeight =1.0 , duration =2.0)
timeHelper .sleep (4.0)

Define target formation (example formation)
target_formation = [

[1.0 , 1.0, 1.0] ,
[1.2 , 1.0, 1.0] ,
[1.0 , 1.2, 1.0] ,
[0.8 , 1.0, 1.0] ,
[1.0 , 0.8, 1.0]

]
steps = 30
dt = 0.5

Dynamic formation and collision avoidance loop
for step in range(steps):

for i, cf in enumerate (allcfs . crazyflies):
target = target_formation [i % len(target_formation)]
current_pos = np.array(cf. position ())
desired = np.array(target)
error = desired - current_pos
other_positions = [np.array(other_cf . position ()) for j, other_cf in

enumerate (allcfs . crazyflies) if j != i]
avoidance = compute_avoidance_offset (current_pos , target ,

other_positions)
new_setpoint = current_pos + 0.1 * error + avoidance
cf. cmdPosition (new_setpoint . tolist (), yaw =0.0)

timeHelper .sleep(dt)

Hover in formation for 2 seconds
print(" Hovering in formation ...")

8

timeHelper .sleep (2.0)

Synchronized landing : All drones descend to 0.0 meters .
print(" Coordinated landing ...")
allcfs .land(targetHeight =0.0 , duration =2.0)
timeHelper .sleep (3.0)
print("Stage 5 complete : Advanced swarm behavior executed .")

if __name__ == " __main__ ":
stage5_advanced_swarm ()

Listing 5: Stage 5: Advanced Swarm Behavior with Collision Avoidance

6.3 Detailed Explanation

• Group Coordination: All drones are assigned a group mask (1) to ensure they receive syn-
chronized takeoff and landing commands.

• Synchronized Takeoff: The swarm takes off simultaneously to 1.0 meter.

• Dynamic Re-planning Loop: For each time step:

– Each drone calculates its error relative to a predefined target formation.
– A collision avoidance offset is computed based on the positions of neighboring drones.
– These factors are combined to update the drone’s setpoint using cmdPosition, ensuring

smooth and safe re-planning.

• Synchronized Landing: The swarm lands in unison after the maneuver.

• Observation: The simulation should display all drones taking off, dynamically adjusting their
positions to form the target formation while avoiding collisions, and landing simultaneously.

7 Conclusion and Submission Guidelines

7.1 Final Submission Requirements

• A public Git repository containing all source code for the five stages.

• A detailed README with setup instructions, design rationale, and execution guidelines.

• A video demonstration (maximum 5 minutes) showing the simulation results for all five stages.

9

8 References
• Crazyswarm Documentation: https://crazyswarm.readthedocs.io/

• Python API Reference: https://crazyswarm.readthedocs.io/en/latest/api.html

• Crazyflie Firmware and CRTP Protocol: https://www.bitcraze.io/documentation/

10

https://crazyswarm.readthedocs.io/
https://crazyswarm.readthedocs.io/en/latest/api.html
https://www.bitcraze.io/documentation/

	Introduction
	Stage 1: Basic Flight (Single Drone)
	Objective
	Boilerplate Code
	Detailed Explanation

	Stage 2: Trajectory Tracking (Single Drone)
	Objective
	Boilerplate Code
	Detailed Explanation

	Stage 3: Coordinated Flight (Multiple Drones)
	Objective
	Boilerplate Code
	Detailed Explanation

	Stage 4: Dynamic Trajectory Control
	Objective
	Boilerplate Code
	Detailed Explanation

	Stage 5: Advanced Swarm Behavior with Collision Avoidance
	Objective
	Boilerplate Code
	Detailed Explanation

	Conclusion and Submission Guidelines
	Final Submission Requirements

	References

