Swarm Drone Simulation Hackathon
Using Crazyswarm and pycrazyswarm (Simulation Only)

ROBOTECHNITK

March 6, 2025

Contents
1__Introduction| 2
2 Stage 1: Basic Flight (Single Drone 2
I g g g
2.1 Objective]l e 2
2.2 Boilerplate Code|l 2
2.3 Detailed Explanation|. 0o 3
[3 Stage 2: Trajectory Tracking (Single Drone)| 3
3.1 Objectivel e e e 3
[3.2 Boilerplate Code] 3
3.3 Detailed Explanation|. o oo 4
[4 Stage 3: Coordinated Flight (Multiple Drones)| 5
4.1 Objectivel e e e e 5
4.2 Boilerplate Code|l L 5
4.3 Detailed Explanation|. o oo 6
[6 Stage 4: Dynamic Trajectory Controll 6
5.1 Objective] e 6
5.2 Boilerplate Code|l e 6
5.3 Detailed Explanation].o 7
[6 Stage 5: Advanced Swarm Behavior with Collision Avoidance] 7
6.1 Objectivel e e e 7
6.2 Boilerplate Code| e 7
6.3 Detailed Explanation|.o oo 9
FC S [Submiss; Guidelines 9
7.1 Final Submission Requirements| o 0. 9
8 References 10

1 Introduction

Welcome to the Swarm Drone Simulation Hackathon! In this competition, you will develop innova-
tive applications to control a swarm of Crazyflie drones using the pycrazyswarm Python API and
ROS in simulation mode only. Your solution will be built in five stages:

Stage 1: Basic Flight (Single Drone): Initialize the simulation and execute a simple flight
sequence (takeoff, hover, and land) for a single drone.

Stage 2: Trajectory Tracking (Single Drone): Command a single drone to follow a smooth
trajectory between points.

Stage 3: Coordinated Flight (Multiple Drones): Synchronize multiple drones to take off,
form a formation, and land.

Stage 4: Dynamic Trajectory Control: Implement dynamic re-planning by having a drone
follow a moving target (e.g., a circular path).

Stage 5: Advanced Swarm Behavior with Collision Avoidance: Combine multi-drone co-
ordination with collision avoidance in a dynamic formation.

All development is done in simulation mode. Remember to build your ROS workspace and
source it before running any scripts:

source ros_ws/devel/setup.bash

2 Stage 1: Basic Flight (Single Drone)

2.1 Objective

Initialize the simulation and perform a basic flight sequence: takeoff, hover, and land with a single
Crazyflie.

2.2 Boilerplate Code

#!/usr/bin/env python

nun

Stage 1: Basic Flight Control for a Single Drone

This script initializes the Crazyswarm simulation and commands one drone to take
off ,

hover, and land.
nnn

import time
from crazyswarm import Crazyswarm

def stagel_basic_£flight():
print("Stage 1: Initializing simulation...")
swarm = Crazyswarm ()
allcfs = swarm.allcfs
timeHelper = swarm.timeHelper

Takeoff: Fly to 1.0 meter over 2 seconds
print ("Taking off...")

allcfs.takeoff (targetHeight=1.0, duration=2.0)
timeHelper.sleep(4.0) # Wait for stabilization

Hover for 5 seconds
print ("Hovering...")
timeHelper.sleep (5.0)

Land: Descend to 0.0 meters over 2 seconds
print ("Landing...")
allcfs.land(targetHeight=0.0, duration=2.0)
timeHelper.sleep(3.0)

print ("Stage 1 complete: Basic flight sequence finished.")

if __name == "_ main__":

stagel_basic_flight ()
Listing 1: Stage 1: Basic Flight Control

2.3 Detailed Explanation

e Environment Setup:

— Build your ROS workspace (typically in ros_ws) and source the setup file:

source ros_ws/devel/setup.bash

— Run the script in simulation mode using the -sim flag:

python stagel_basic_flight.py --sim

e Code Walkthrough:

— The script initializes the simulation via the Crazyswarm class.
— It retrieves the list of drones (allcfs) and a timing helper (timeHelper).

— Commands are issued to take off (to 1.0 m), hover, and then land (to 0.0 m), with delays
ensuring each phase completes.

e Observation: In the simulation window, you should see the drone executing the flight sequence.

3 Stage 2: Trajectory Tracking (Single Drone)

3.1 Objective

Enhance Stage 1 by having the drone follow a smooth trajectory from its initial takeoff position to
a specified goal position using the goTo command.

3.2 Boilerplate Code

#!/usr/bin/env python

nmnn

Stage 2: Single Drone Trajectory Tracking

This script commands a single drone to take off, move to a new position using a
smooth trajectory,

and then land.

nun

import time
from crazyswarm import Crazyswarm

def stage2_trajectory_tracking():
print ("Stage 2: Initializing simulation...")
swarm = Crazyswarm ()
allcfs = swarm.allcfs
timeHelper = swarm.timeHelper

Takeoff: Reach 1.0 meter altitude

print ("Taking off...")

allcfs.takeoff (targetHeight=1.0, duration=2.0)
timeHelper.sleep (4.0)

Trajectory: Move to a new position (e.g., [1.0, 1.0, 1.0])
print ("Executing trajectory (goTo)...")

goal_position = [1.0, 1.0, 1.0]
allcfs.goTo(goal=goal_position, yaw=0.0, duration=3.0)
timeHelper.sleep (4.0)

Hover for 3 seconds at new position
print ("Hovering at new position...")
timeHelper.sleep (3.0)

Land

print ("Landing...")
allcfs.land(targetHeight=0.0, duration=2.0)
timeHelper.sleep (3.0)

print ("Stage 2 complete: Trajectory tracking finished.")

if name == "__main__":

stage2_trajectory_tracking()

Listing 2: Stage 2: Trajectory Tracking

3.3 Detailed Explanation

o Takeoff: The drone is commanded to ascend to 1.0 meter in 2 seconds. A delay allows it to
stabilize.

e Trajectory Execution: The goTo command calculates a smooth trajectory from the current
position to [1.0, 1.0, 1.0].

e« Hovering and Landing: After reaching the target, the drone hovers briefly before landing.

e Observation: The simulation window should display the drone taking off, following the trajec-
tory, hovering, and landing.

4 Stage 3: Coordinated Flight (Multiple Drones)

4.1 Objective

Extend your solution to control multiple Crazyflies simultaneously. Use group commands to syn-
chronize maneuvers such as takeoff, formation flight, and landing.

4.2 Boilerplate Code

#!/usr/bin/env python

nmnn

Stage 3: Coordinated Flight for Multiple Drones

This script commands multiple Crazyflies to take off, fly in a coordinated

formation, and land simultaneously.
nun

import time
from crazyswarm import Crazyswarm

def stage3_coordinated_flight ():

print ("Stage 3: Initializing simulation for multiple dromnes...")
swarm = Crazyswarm ()

allcfs = swarm.allcfs

timeHelper = swarm.timeHelper

Set all drones to the same group (e.g., group mask = 1)

for cf in allcfs.crazyflies:
cf.setGroupMask (1)

Synchronized Takeoff

print ("Coordinated takeoff...")

allcfs.takeoff (targetHeight=1.0, duration=2.0)
timeHelper.sleep (4.0)

Coordinated maneuver: Form a line formation
print ("Forming a line formation...")
for cf in allcfs.crazyflies:
offset = [0.5 * cf.id, 0, O]
current_pos = cf.position ()
goal = [current_pos[0] + offset[0], current_pos[1], current_pos[2]]
cf.goTo(goal=goal, yaw=0.0, duration=3.0, relative=False, groupMask=1)
timeHelper.sleep (5.0)

Synchronized Landing

print ("Coordinated landing...")
allcfs.land(targetHeight=0.0, duration=2.0)
timeHelper.sleep (3.0)

print ("Stage 3 complete: Coordinated flight achieved.")

if __name == "_ main__":

stage3_coordinated_£flight ()
Listing 3: Stage 3: Coordinated Flight

4.3 Detailed Explanation

o Group Setup: Each drone is assigned a group mask (1) so that broadcast commands affect all
drones.

e Synchronized Takeoff and Landing: The entire swarm takes off and lands simultaneously.

e Coordinated Maneuver: The drones are commanded to form a line by moving to positions
offset by their IDs.

¢ Observation: Verify in simulation that all drones take off, form the line, and land simultane-
ously.

5 Stage 4: Dynamic Trajectory Control

5.1 Objective

Implement dynamic re-planning for a single drone by commanding it to follow a circular trajectory.
The drone’s setpoints are continuously updated using cmdPosition to follow the circular path.

5.2 Boilerplate Code

#!/usr/bin/env python

nun

Stage 4: Dynamic Trajectory and Re-planning

This script demonstrates advanced control where a single drone follows a circular
trajectory

with continuous re-planning.

nun

import time
import numpy as np
from crazyswarm import Crazyswarm

def stage4_dynamic_trajectory():
print ("Stage 4: Initializing simulation for dynamic trajectory...")
swarm = Crazyswarm ()
allcfs = swarm.allcfs
timeHelper = swarm.timeHelper

Use the first Crazyflie
cf = allcfs.crazyflies [0]

Takeoff

print ("Taking off...")

cf.takeoff (targetHeight=1.0, duration=2.0)
timeHelper.sleep (4.0)

Dynamic trajectory: circular motion in the XY plane

print ("Executing dynamic circular trajectory...")
center = np.array([1.0, 1.0])

radius = 0.5

duration = 10.0

steps = 50

dt = duration / steps

for i in range(steps):
theta = 2 * np.pi * i / steps
pos_x = center [0] + radius * np.cos(theta)
pos_y = center[1] + radius * np.sin(theta)
pos = [pos_x, pos_y, 1.0]
cf.cmdPosition(pos, yaw=0.0)
timeHelper.sleep(dt)

Hover and then land

print ("Hovering...")
timeHelper.sleep (2.0)
print ("Landing...")

cf.land(targetHeight=0.0, duration=2.0)
timeHelper.sleep(3.0)
print ("Stage 4 complete: Dynamic trajectory executed.")

if __name == "__main__":

stage4_dynamic_trajectory ()

Listing 4: Stage 4: Dynamic Trajectory Control

5.3 Detailed Explanation

o Takeofl: The drone ascends to 1.0 meter and stabilizes.

e Circular Trajectory: A loop computes a circular path using numpy. The drone’s position is
updated continuously using cmdPosition to follow the circle.

e« Hover and Land: After completing the circle, the drone hovers briefly before landing.

e Observation: In simulation, the drone should follow a smooth circular trajectory.

6 Stage 5: Advanced Swarm Behavior with Collision Avoidance

6.1 Objective

Develop an advanced control scenario where multiple drones perform coordinated flight while dy-
namically adjusting their trajectories to avoid collisions. This is achieved by computing avoid-
ance offsets for each drone based on its neighbors and continuously updating setpoints using
cmdPosition.

6.2 Boilerplate Code

#!/usr/bin/env python

nnn

Stage 5: Advanced Swarm Behavior with Collision Avoidance

This script demonstrates advanced behavior where multiple Crazyflies execute a
coordinated maneuver

and dynamically adjust trajectories to avoid simulated collisions.

nun

import time
import numpy as np
from crazyswarm import Crazyswarm

def compute_avoidance_offset (current_pos, desired_pos, other_positions,

min_distance=0.3):
nmwn
Computes a simple repulsive offset to maintain a minimum distance from other
drones .
For each drone closer than min_distance, a repulsive force is applied
proportional to the difference.
nnn
avoidance = np.array([0.0, 0.0, 0.0])
for pos in other_positions:

vec = np.array(desired_pos) - np.array(pos)

distance = np.linalg.norm(vec)

if distance < min_distance and distance > O:

avoidance += (vec / distance) * (min_distance - distance)

return avoidance

def stageb_advanced_swarm():
print ("Stage 5: Initializing simulation for advanced swarm behavior...")
swarm = Crazyswarm ()
allcfs = swarm.allcfs
timeHelper = swarm.timeHelper

Set group mask for coordinated control
for cf in allcfs.crazyflies:
cf.setGroupMask (1)

Synchronized takeoff: All drones ascend to 1.0 meter.
print ("Coordinated takeoff for swarm...")
allcfs.takeoff (targetHeight=1.0, duration=2.0)
timeHelper.sleep (4.0)

Define target formation (example formation)

target_formation = [
[t.0, 1.0, 1.0],
[1t.2, 1.0, 1.0],
[t.0, 1.2, 1.0],
[0.8, 1.0, 1.0],
[1.0, 0.8, 1.0]

]

steps = 30

dt = 0.5

Dynamic formation and collision avoidance loop
for step in range(steps):
for i, cf in enumerate(allcfs.crazyflies):

target = target_formation[i) len(target_formation)]

current_pos = np.array(cf.position())

desired = np.array(target)

error = desired - current_pos

other_positions = [np.array(other_cf.position()) for j, other_cf in
enumerate (allcfs.crazyflies) if j != 1i]

avoidance = compute_avoidance_offset (current_pos, target,
other_positions)

new_setpoint = current_pos + 0.1 * error + avoidance

cf.cmdPosition(new_setpoint.tolist (), yaw=0.0)
timeHelper .sleep (dt)

Hover in formation for 2 seconds
print ("Hovering in formation...")

if

timeHelper.sleep (2.0)

Synchronized landing: All drones descend to 0.0 meters.
print ("Coordinated landing...")
allcfs.land(targetHeight=0.0, duration=2.0)
timeHelper.sleep (3.0)

print ("Stage 5 complete: Advanced swarm behavior executed.")

__name == "_ main__":

stageb_advanced_swarm ()

Listing 5: Stage 5: Advanced Swarm Behavior with Collision Avoidance

6.3 Detailed Explanation

7

Group Coordination: All drones are assigned a group mask (1) to ensure they receive syn-
chronized takeoff and landing commands.

Synchronized Takeoff: The swarm takes off simultaneously to 1.0 meter.
Dynamic Re-planning Loop: For each time step:

— Each drone calculates its error relative to a predefined target formation.
— A collision avoidance offset is computed based on the positions of neighboring drones.

— These factors are combined to update the drone’s setpoint using cmdPosition, ensuring
smooth and safe re-planning.

Synchronized Landing: The swarm lands in unison after the maneuver.

Observation: The simulation should display all drones taking off, dynamically adjusting their
positions to form the target formation while avoiding collisions, and landing simultaneously.

Conclusion and Submission Guidelines

7.1 Final Submission Requirements

e A public Git repository containing all source code for the five stages.
e A detailed README with setup instructions, design rationale, and execution guidelines.

o A video demonstration (maximum 5 minutes) showing the simulation results for all five stages.

8 References

e Crazyswarm Documentation: https://crazyswarm.readthedocs.io/
o Python API Reference: https://crazyswarm.readthedocs.io/en/latest/api.html

o Crazyflie Firmware and CRTP Protocol: https://www.bitcraze.io/documentation/

10

https://crazyswarm.readthedocs.io/
https://crazyswarm.readthedocs.io/en/latest/api.html
https://www.bitcraze.io/documentation/

	Introduction
	Stage 1: Basic Flight (Single Drone)
	Objective
	Boilerplate Code
	Detailed Explanation

	Stage 2: Trajectory Tracking (Single Drone)
	Objective
	Boilerplate Code
	Detailed Explanation

	Stage 3: Coordinated Flight (Multiple Drones)
	Objective
	Boilerplate Code
	Detailed Explanation

	Stage 4: Dynamic Trajectory Control
	Objective
	Boilerplate Code
	Detailed Explanation

	Stage 5: Advanced Swarm Behavior with Collision Avoidance
	Objective
	Boilerplate Code
	Detailed Explanation

	Conclusion and Submission Guidelines
	Final Submission Requirements

	References

